Clinical Practice Guideline for Foot and Ankle Diagnosis and Treatment

TABLE OF CONTENTS

I. Review Criteria for Foot and Ankle Surgery ... 3

II. Introduction ... 11

A. Background and Prevalence .. 11

III. Establishing Work-relatedness .. 13

IV. Pre-existing Non-work-related Conditions ... 13

A. Pes Planus .. 13

B. Pes Cavus ... 14

C. Plantar Fasciitis ... 15

D. Osteoarthritis ... 15

V. Assessment ... 16

A. Imaging.. 17

B. Preventing Complications .. 17

C. Measuring Functional Improvement .. 17

VI. Specific Conditions and Surgical Procedures... 18

A. Ankle Arthroscopy and Cheilectomy .. 18

B. Ankle Arthrodesis/Fusion or Arthroplasty/Replacement .. 18

Arthrodesis/Fusion ... 19

Arthroplasty/Joint Replacement .. 19

C. Subtalar Arthrodesis .. 20

D. Debridement or Stabilization of a Medial or Lateral Talar Lesion................................. 20

E. Lateral Ligament Repair or Reconstruction ... 21

F. Peroneal Tendon Repair .. 21

G. Achilles Tendon Repair or Reconstruction .. 22

Repair at Insertion .. 22
Repair... 22
Reconstruction.. 23
H. Posterior Tibialis Tendon Reconstruction .. 23
 PTTD and Work-relatedness ... 23
I. Tarsal Tunnel Release .. 23
J. Amputations ... 24
 Amputations Contemplated in the Setting of Chronic Pain .. 25
VII. Return to Work ... 25
VIII. Acknowledgements .. 26
IX. References .. 27
I. Review Criteria for Foot and Ankle Surgery

Note: Not all surgical procedures that require prior authorization appear in this criteria table.

<table>
<thead>
<tr>
<th>A request may be appropriate for</th>
<th>If the patient has</th>
<th>AND the diagnosis is supported by these clinical findings:</th>
<th>AND this has been done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Procedure</td>
<td>Condition or Diagnosis</td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>Ankle Arthroscopy</td>
<td>Loose body</td>
<td>A discrete documented work-related ankle trauma</td>
<td>Catching \ AND/OR \ Locking \ AND/OR \ Effusion</td>
</tr>
<tr>
<td>Ankle Cheilectomy</td>
<td>Bony impingement</td>
<td>A discrete documented work-related ankle trauma \ AND \ Pain</td>
<td>Decrease in range of motion (ROM)</td>
</tr>
<tr>
<td>Ankle Arthroplasty or Ankle Fusion</td>
<td>Arthrosis due to post-traumatic arthritis from a previous work-related injury</td>
<td>A discrete documented work-related ankle injury \ AND \ Pain</td>
<td>Visual or radiographic deformity \ AND/OR \ Decreased range of motion (ROM)</td>
</tr>
<tr>
<td>A request may be appropriate for</td>
<td>If the patient has</td>
<td>AND the diagnosis is supported by these clinical findings:</td>
<td>AND this has been done</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Surgical Procedure</td>
<td>Condition or Diagnosis</td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>Double Arthrodesis Subtalar Arthrodesis Triple Arthrodesis Calcaneal Cuboid Arthrodesis Gastroc Slide / Tendon Achilles Lengthening (TAL)</td>
<td>Post-traumatic arthritis of the hindfoot resulting from a previous work-related injury</td>
<td>A discrete documented work-related event, that results in post-traumatic arthritis of the hindfoot AND Pain *Congenital hindfoot valgus and pes planus, if present, do not arise from and are not worsened by cumulative weight bearing in the workplace</td>
<td>Swelling AND/OR Decreased ROM</td>
</tr>
<tr>
<td>Debridement or Stabilization of a Medial Lesion of the Talus</td>
<td>Osteochondral defect of the talus</td>
<td>A discrete documented work-related ankle trauma AND Pain</td>
<td>Diagnostic lidocaine injection* demonstrates > 50% pain relief and at least 3 point improvement on visual analog scale *Use contrast and fluoroscopy to confirm placement in the joint Positive results indicate pain originates within the joint OR CT scan demonstrates an osteochondral defect</td>
</tr>
</tbody>
</table>

Washington State Department of Labor and Industries Surgical Guideline for Work-related Foot-Ankle Injuries - 2017
<table>
<thead>
<tr>
<th>Surgical Procedure</th>
<th>Condition or Diagnosis</th>
<th>Subjective</th>
<th>Objective</th>
<th>Imaging</th>
<th>AND this has been done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debridement or Stabilization of a Lateral Lesion of the Talus</td>
<td>Osteochondral defect of the talus</td>
<td>A discrete documented work-related ankle injury AND Pain</td>
<td>There are no physical findings that are pathognomonic of osteochondral lesions</td>
<td>MRI demonstrates bone marrow edema associated with a focal lesion OR CT scan demonstrates an osteochondral defect</td>
<td>At least 6 weeks of any of the following: Activity modification, Non-opioid analgesics, Bracing *Non-operative management is not required if a detached fragment is present</td>
</tr>
<tr>
<td>Lateral Ankle Ligament Repair / Reconstruction e.g. Bröstrom procedure, Watson-Jones procedure</td>
<td>Severe ankle sprain or recurrent sprains leading to instability</td>
<td>A discrete documented work-related ankle injury AND Ankle “gives way” OR Swelling OR Difficulty walking on uneven ground</td>
<td>Positive instability testing: e.g. Anterior drawer testing OR Asymmetric inversion laxity (when compared to contralateral side)</td>
<td>Bilateral stress X-rays w/ asymmetrical stress tests: Talar tilt > 10 degrees OR Anterior displacement index of >15% *MRI may be useful to more specifically diagnose possible underlying pathology</td>
<td>At least three months of conservative care which may include: Physical Therapy, Bracing, Casting, Taping, Immobilization</td>
</tr>
<tr>
<td>A request may be appropriate for</td>
<td>If the patient has</td>
<td>AND the diagnosis is supported by these clinical findings:</td>
<td>AND this has been done</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical Procedure</td>
<td>Condition or Diagnosis</td>
<td>Subjective</td>
<td>Objective</td>
<td>Imaging</td>
<td>Non-operative care</td>
</tr>
<tr>
<td>Peroneal Tendon Reconstruction</td>
<td>Tenosynovitis, tear, rupture, or dislocation of the peroneal tendon(s) OR Os peroneum fracture or contusion</td>
<td>A discrete documented work-related ankle trauma AND Lateral ankle/foot pain AND/OR Swelling AND/OR Popping</td>
<td>Clinical examination is anatomically consistent with MRI findings Dislocating peroneal tendon AND/OR Weakness to eversion or dorsiflexion AND/OR Effusion If there are documented underlying deformities present that could cause failure of reconstruction, they should be corrected at time of surgery</td>
<td>MRI demonstrates a longitudinal/partial thickness tear, dislocation, or pathologic anatomy consistent with a dislocation of the peroneal tendon(s) OR Plain X-Ray demonstrates os peroneum fracture</td>
<td>Dislocating or rupture of the tendon(s) does not require non-operative care Longitudinal/partial thickness tears, or tenosynovitis: At least 12 weeks of a combination of the following: Activity modification, Non-opioid analgesics, Bracing, Immobilization</td>
</tr>
<tr>
<td>A request may be appropriate for</td>
<td>If the patient has</td>
<td>AND the diagnosis is supported by these clinical findings:</td>
<td>AND this has been done</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical Procedure</td>
<td>Condition or Diagnosis</td>
<td>Subjective</td>
<td>Objective</td>
<td>Imaging</td>
<td>Non-operative care</td>
</tr>
</tbody>
</table>
| Achilles Tendon Repair | An acute complete tear/rupture of the Achilles tendon | A discrete documented work-related ankle trauma
AND Pain
AND/OR Plantarflexion weakness | Positive Thompson’s test
AND/OR Palpable defect
AND/OR Swelling
AND/OR Plantarflexion weakness | Not required
*If an MRI has been obtained, must reveal complete rupture of the Achilles tendon | Non-operative care is not required |
| Achilles Tendon Reconstruction| Sub-acute/chronic Achilles tendon tear/rupture (When diagnosis is made >4 weeks post-injury) | A discrete documented work-related ankle trauma
AND Pain
AND/OR Plantarflexion weakness | Positive Thompson’s test
AND/OR Plantarflexion weakness
AND/OR Achilles tendon laxity | MRI demonstrates heterogeneous signal intensity consistent with a chronic tear | Non-operative care is not required |
<table>
<thead>
<tr>
<th>A request may be appropriate for</th>
<th>If the patient has</th>
<th>AND the diagnosis is supported by these clinical findings:</th>
<th>AND this has been done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertional Achilles Tendon Reconstruction Ostectomy Flexor Hallucis Longus Transfer Gastroc Slide</td>
<td>Insertional Achilles tendinopathy, with or without Haglund deformity</td>
<td>Pain with palpation OR Swelling OR Warmth/redness</td>
<td>MRI demonstrates abnormal signal in the bone, bursa, or tendon</td>
</tr>
<tr>
<td>Posterior Tibialis Tendon Reconstruction Medializing Calcaneal Osteotomy Spring Ligament Reconstruction Gastroc Slide FDL Transfer Subtalar Fusion Triple Arthrodesis</td>
<td>Posterior tibialis tendon insufficiency / dysfunction Spring ligament sprain or rupture Hindfoot/midfoot deformity and post-traumatic arthritis</td>
<td>A discrete documented work-related event, the mechanism of which transmits enough force to cause insufficiency of the posterior tibial tendon, or sprain or rupture of the spring ligament. In the patient with congenital hindfoot valgus and pes planus posture of the foot, this condition does not arise from and is not worsened by</td>
<td>Swelling AND one of the following: Inability to do a single foot heel rise AND/OR Spring ligament tear</td>
</tr>
<tr>
<td>Surgical Procedure</td>
<td>Condition or Diagnosis</td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Medial Cuneiform Osteotomy</td>
<td></td>
<td>cumulative weight bearing in the workplace.</td>
<td>AND Medial ankle or mid-foot pain</td>
</tr>
<tr>
<td>Lateral Column Lengthening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidner Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarsal Tunnel Release</td>
<td>Tarsal tunnel syndrome (TTS)</td>
<td>A discrete documented work-related foot/ankle trauma AND Pain/paresthesias in the distribution of the medial and/or lateral plantar nerves</td>
<td>IF a compressive lesion is not present on MRI, a positive NCS consistent with tarsal tunnel syndrome*</td>
</tr>
</tbody>
</table>

* Nerve conduction studies of this nerve are typically difficult to perform and interpret

Washington State Department of Labor and Industries
Surgical Guideline for Work-related Foot-Ankle Injuries - 2017
A request may be appropriate for
If the patient has AND the diagnosis is supported by these clinical findings: AND this has been done
<table>
<thead>
<tr>
<th>Surgical Procedure</th>
<th>Condition or Diagnosis</th>
<th>Subjective</th>
<th>Objective</th>
<th>Imaging</th>
<th>Non-operative care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective Amputation when pain is the primary indication</td>
<td>If amputation is being requested, after all conservative care efforts have been exhausted, the patient must be evaluated at a Department of Labor and Industries designated amputation Center of Excellence. See Amputations Contemplated in the Setting of Chronic Pain for further discussion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II. Introduction

This guideline reflects a best practice standard for surgical treatment of certain foot and ankle conditions sustained by injured workers treated in the Washington State workers’ compensation system under Title 51 Revised Code of Washington (RCW). Providers who are in the department’s Medical Provider Network are required to follow this guideline when treating injured workers.\(^a\) The surgical criteria are used in the department’s utilization review program as the supporting evidence has shown these provide the best chance for injured workers to have a good surgical outcome. To help ensure that diagnosis and treatment of foot and ankle conditions are of the highest quality, this guideline emphasizes:

- Conducting a thorough assessment and making an accurate diagnosis.
- Appropriately determining work-relatedness.
- Making the best treatment decisions that are curative or rehabilitative.\(^b\)
- Facilitating the worker’s return to health, productivity, and work.

The guideline was developed in 2016-2017 by a subcommittee of the Industrial Insurance Medical Advisory Committee (IIMAC). The subcommittee was comprised of practicing physicians in rehabilitation medicine, occupational medicine, orthopedic surgery, and podiatry. The guideline recommendations are based on the weight of the best available clinical and scientific evidence from a systematic review of medical literature, and on a consensus of expert opinion when scientific evidence was insufficient or inconclusive. Visit the department’s Medical Treatment Guidelines webpage for detailed information on the guideline development process.\(^c\)

A. Background and Prevalence

Workplace accidents (such as falls, slips, and machinery entrapment), that result in traumatic foot and ankle injuries (such as fractures, sprains, and crush injuries or amputations), are the most recognizable. At the same time, non-work related congenital problems (e.g. flat feet), joint instability (such as from an old sport injury), and chronic conditions (e.g. diabetic peripheral neuropathy) can predispose a person to being injured on the job and can complicate recovery. The goal after a workplace injury is to return the worker to as close to pre-injury status as possible and maximize function and the ability to return to work.

The Bureau of Labor Statistics reports that the incidence rate for injuries to the ankle is 5.6 per 10,000 full time workers, and the incidence rate for foot injuries as 4.8 per 10,000 full time workers (BLS 2014).\(^1\) Sprains, strains, and tears in the ankle were the injury type with the highest incidence at 3.7 per 10,000 full time workers. Most of these injuries are first treated in hospital emergency departments. One study found the estimated incidence of ankle sprains or strains was 206 per 100,000 patients reporting to an emergency department (Lambers 2012).\(^2\) In the same study, the estimated incidence of ankle fractures was 49 per 100,000 reporting, and for foot contusions or abrasions, the estimated incidence was 50 per 100,000 reporting.

\(^a\) http://app.leg.wa.gov/RCW/default.aspx?cite=51.36.010
\(^b\) http://app.leg.wa.gov/wac/default.aspx?cite=296-20-01002
\(^c\) http://www.lni.wa.gov/ClaimsIns/Providers/TreatingPatients/TreatGuide/?F=MainFooter&source=FF
The incidence of foot and ankle surgeries in Washington State’s workers’ compensation system is remarkably consistent across each year and category (Figure 1).

Figure A. Distribution of foot/ankle surgeries 2009-2014

Figure B: Surgery Rates

- 6756 workers had at least one surgery in the foot and/or ankle
- 42% fractures and dislocations
- 10% excision or resection, e.g. lesions, spurs, bone, tumor, etc.
- 10% repair, revision, reconstruction of ankle (without fracture)
- 2% amputation procedures
- Multiple surgery distribution:
 - 1 surgery: 56%
 - 2 surgeries: 26%
 - 3 surgeries: 11%
 - 4 surgeries: 4%
 - 5 or more surgeries: all ≤ 2%
III. Establishing Work-relatedness

An injury sustained during the course of employment is defined in Washington State statute as “a sudden and tangible happening, of a traumatic nature, producing an immediate or prompt result, and occurring from without, and such physical conditions as result therefrom.”d A legal test for whether the department or self-insured employer is liable for the care that a worker receives for an injury is whether the workplace injury is “a proximate cause” of the accepted condition being treated. An injury may be a proximate cause of a condition being treated only if “but for” the injury, the treatment would not be necessary and proper. One approach to determining whether an injury meets this test is to determine whether the worker’s need for treatment is any different than it would have been had, the work-related injury never occurred. In the case of degenerative conditions, consider whether the duties and tasks of the job significantly contributed to aggravation of the condition beyond what would normally be expected for the worker’s age and genetics. If the answer is no, then it is likely not work related. If a proposed treatment would have been needed regardless of the industrial injury, the injury would not be a proximate cause of the need for treatment.

Occupational disease is defined in RCW 51.08.140 as a “disease or infection that arises naturally and proximately out of employment.”e Establishing an occupational disease diagnosis requires that all of the following criteria are met:

1. Exposure: Workplace activities that contribute to or cause foot or ankle conditions, and
2. Outcome: Diagnosis of a condition that meets the diagnostic criteria in this guideline, and
3. Relationship: Documentation that based on generally accepted scientific evidence, the work exposures created a risk of contracting or worsening the condition relative to the risks in everyday life, on a more-probable-than-not basis (\textit{Dennis v. Dept. of Labor and Industries}, 1987). In epidemiological studies, this will usually translate to an Odds Ratio (OR) ≥ 2.

A thorough occupational and non-occupational exposure history is essential for determining whether a condition is work-related and whether it is due to an acute or chronic exposure. For chronic exposures, it is important to document where, when, and for how long they occurred, as they could span multiple employers who would then share liability for an occupational disease. Providers should submit the Occupational Disease and Employment History form to the department or self-insurer as soon as possible (a second form must be used for \textit{continuation of the occupational disease history}).f

IV. Pre-existing Non-work-related Conditions

A. Pes Planus

Pes planus, also known as flat feet or fallen arches, is a foot condition characterized by a flattened, pronated foot in the subtalar neutral position (Walters 2014).3 In general, humans are born with flat feet,
and the medial arch of the foot typically develops during the first decade of life (Ozan 2015). In some cases, an absent or abnormally low arch persists through adolescence, or is acquired in adulthood (Shibuya 2010).

Classification of pes planus generally refers to flexible or rigid varieties, characterized by a qualitative assessment of the stiffness of the foot during dynamic loading and/or physical exam (Lee 2005). Flexible pes planus is usually considered a continuation of a congenital condition, is generally asymptomatic, and can resolve with time (Ozan 2015). In some cases, the condition is symptomatic and pathological, and may require treatment (Ozan 2015). When treatment is required, conservative interventions have been shown to help manage the condition (Scharer 2010), though surgical intervention may be necessary if conservative options fail (Nelson 2004, Brancheau 2012).

Acquired pes planus is often asymptomatic and is characterized by an abducted forefoot and valgus hindfoot (Abousayed 2016). Acquired pes planus has been attributed to inflammatory arthritis, trauma, and most commonly posterior tibial tendon dysfunction (PTTD) (Erol 2015, Zaw 2010). PTTD will be addressed later in the guideline within the posterior tibialis tendon reconstruction section.

Pes planus may predispose a worker to having foot pain if his or her job involves prolonged periods of weight bearing. While an association between prolonged standing and increased risks of musculoskeletal pain has been shown, there is insufficient evidence to demonstrate that prolonged weight bearing is associated with pes planus (McCulloch 2002).

B. Pes Cavus

Pes cavus refers to a foot deformity in which the medial longitudinal arch of the foot is abnormally high and does not flatten with weight bearing (Burns 2007). Gait deficits and foot pain have been associated with pes cavus resulting from the decreased ability to absorb ground reaction forces due to the characteristic shape of a cavus foot (Burns 2007). Presenting in either childhood or adulthood, a cavus foot is a relatively common finding, occurring in one fifth to one quarter of the general population (Aminian 2008). Several primary origins have been associated with pes cavus: neuromuscular, congenital, idiopathic, and traumatic (Burns 2007, Statler 2005). Neurological conditions such as cerebral palsy, muscular dystrophy, Charcot-Marie-Tooth disease, and poliomyelitis account for 75% of all pes cavus cases (Statler 2005). As such, pes cavus is not considered a work-related condition.

Symptoms of pes cavus can include recurrent ankle sprain, tendon disorders, instability in gait, callous formation and stress fractures to the lateral border of the foot (Burns 2007, Desai 2010, Manoli 2005, Burns 2005, Statler 2005). This type of symptomology is thought to derive from abnormal pressure distribution across the sole of the foot and can contribute to significant disability (Burns 2007, Groner 2005). The presence of this type of variant foot mechanics could predispose a worker to mechanical stresses that may contribute to foot complaints. Treatment of pes cavus is primarily conservative, with orthotics commonly used to reduce and redistribute pressure on the sole of the foot (Burns 2007). Additional conservative treatment methods include balance improvement, stretching and strengthening of
weak muscles (Manoli 2005). When conservative measures fail, surgical treatment may be required (Zhou 2014).

C. Plantar Fasciitis

The plantar fascia is a broad, fibrous tissue band that extends from the heel bone (calcaneus) to the toes (metatarsals), providing support to the arch and stabilizing it during normal weight bearing. Acute trauma (e.g. jumping or falling onto a hard surface) may injure or rupture the plantar fascia, but if the plantar fascia is frequently irritated, inflammation and degenerative processes (e.g. micro tears) may result in chronic conditions with progressive histopathological changes. Collectively, these conditions have been characterized as plantar fasciopathy. Plantar fasciitis, the inflammation of the plantar fascial attachment to the anterior processes of the heel bone, is a form of plantar fasciopathy. However, regardless of the exact terminology these terms are used to describe similar pathology.

Plantar fasciitis often presents as progressive and persistent deep, dull ache-like pain on the plantar surface of the heel. Other symptoms can include a burning sensation, pain and/or stiffness when getting out of bed, pain when getting up to walk after a period of inactivity, pain toward the end of the day, increased pain in the heel or arch, and overall tired feet (Irving 2006, Cutts 2012, Beeson 2014). While it has been described as a self-limiting condition, it often has the potential to become chronic (Orchard 2012, Beeson 2014).

Research suggests plantar fasciitis may be associated with long-term changes in the fascia, such as decreased elasticity resulting in a thickened foot pad and reduced shock-absorbing ability. Other conditions hypothesized to be associated with plantar fasciitis include infection, arthritis, gout, nerve entrapment, deconditioning, a sudden increase in physical activity, obesity or recent weight gain (e.g. pregnancy), or poor biomechanics (e.g. flat feet, excessive pronation, rear foot eversion, or unnatural gait) (Irving 2006, Thomas 2010, Orchard 2012, Cutts 2012, Beeson 2014).

External risk factors may also contribute to the development of plantar fasciitis. Examples include long periods of standing or walking on certain surfaces (e.g. cement floors) (Riddle 2003, Irving 2006, Waclawski 2015), wearing non-supportive footwear (Thomas 2010, Rajput 2004, Singh 1997), or result from prolonged stressful activity (e.g. long distance running or unusual rapid walking such as a “forced march”) (Singh 1997).

Treatment of plantar fasciitis may include orthotics (pads), heel cord stretching exercises, anti-inflammatory medication, activity modification, night splinting, steroid injection to the site, or surgery (Orchard 2012, Cutts 2012). Surgical treatment (e.g. fasciotomy) is rarely indicated, with less than 5% of patients undergoing surgery (Davis 1994).

D. Osteoarthritis

A complicating factor when trying to establish work-relatedness is the presence of osteoarthritis (OA). Osteoarthritis is a normal degenerative process and a progressive condition that results from loss or
deterioration of articular cartilage. It is the most common arthritic disease, it is the most common cause of long-term disability in persons older than 65, and it is expected to become the world’s 4th leading cause of disability by 2020 (Woolf 2003).32

While osteoarthritis is an important consideration for treatment of foot and ankle conditions, the ankle joint is much less likely to experience symptomatic OA through normal risk factors alone, such as age (Peyron 1984).33 Brown et al estimated that nearly 80% of all ankle osteoarthritis is post-traumatic; and the estimated yearly incidence of symptomatic ankle OA in the same study was 1,113 cases in Iowa alone (Brown 2006).34 In patients seeking treatment, symptomatic osteoarthritis with radiographic changes occurs about 8-9.4 times more often in knee than in the ankle (Wilson 1990, Cushnaghan 1991).35, 36

Therefore, in the vast majority of arthritic conditions attributed to an occupation, a substantial, discrete work-related traumatic event can be identified. A contention that an industrial injury caused, aggravated, or accelerated an osteoarthritic condition should be supported by adequate documentation, to include:

1. A careful prior medical history, and a careful history of the present condition, to document as clearly as possible any pre- or post-injury presence or progression, objectively or subjectively, of an osteoarthritic condition;
2. An evidence-based explanation supporting the contention that the osteoarthritis would not presently require treatment had the industrial injury or occupational disease not have occurred.

V. Assessment

With 33 joints, 26 bones, and over 100 muscles, tendons, and ligaments, the foot and ankle are a complex structure. Clinical assessment should include:

- Observing the foot and ankle for shape, swelling/edema, and color.
- Checking the skin temperature.
- Palpating for tenderness, knowing that assessing for bony injury may be limited in acute injuries due to bruising and diffuse soft tissue swelling.
- Evaluating range of motion and weight bearing ability.
- Observing the workers gait and stance.
- Checking posterior, anterior, medial, and lateral angles for anatomical alignment and position of trunk and hip, hip and knee, knee and foot, and arch position.
- Condition-specific tests such as Thompson, Squeeze, External Rotation Stress, Anterior Drawer, and the Talar Tilt test (Young 2005).37

In addition to performing a thorough exam, it is critical to get an accurate history of injury occurrence, previous injuries, and underlying comorbidities/ risk factors, which may predispose the worker to further foot and ankle injury.
A. Imaging

The recommended imaging procedures for various foot and ankle surgeries are specified in the criteria table. Weight bearing x-rays are recommended when determining the presence or extent of degenerative disease. Given the complex three dimensional anatomy of the foot and ankle, CT scans or CT-SPECT scans are used at times when finer detail is needed e.g. when suspecting an occult fracture or to further study characteristics of a known fracture, deformity, or arthritis. Magnetic resonance imaging (MRI) is most commonly used to diagnose injuries to the ligaments or tendons but is not recommended for every case of acute pain or for degenerative joint disease (L&I requires prior authorization for all MRIs; visit the Advanced Imaging Guidelines web page for complete information).

B. Preventing Complications

Worsening conditions can lead to more drastic treatment and even amputation, especially if careful monitoring and timely assessment and care are not done. It is critical to conduct a thorough assessment of risk factors prior to surgery to evaluate the risks and benefits of the procedure. Risk factors include:

- vascular disease
- diabetes and the extent of diabetic complications
- tobacco use
- age-related system changes such as immune status
- degree of soft tissue trauma and swelling
- expected duration of surgical time
- mental health status
- psychosocial status

Examples of this workup include determining the level of diabetic control through HbA1c values, performing appropriate vascular studies, consulting with a vascular surgeon, and initiating a preoperative tobacco cessation program.

Refer to the “Conservative Care Options for Work-Related Foot and Ankle Conditions” occupational health practice resource published by the Industrial Insurance Chiropractic Advisory Committee and Labor & Industries Office of the Medical Director for a thorough discussion of patient presentation, prognostic indicators, and clinical examination recommendations.

C. Measuring Functional Improvement

From the time of injury to full restoration, from conservative care to post-operative assessment, it’s critical to measure the patient’s functional improvement and changes in their pain experience using

http://www.lni.wa.gov/ClaimsIns/Providers/TreatingPatients/ByCondition/TobaccoCessation.asp
http://www.lni.wa.gov/ClaimsIns/Files/OMD/IICAC/2015WorkRelatedMechanicalFootAnkleConditions44.pdf
validated tools in a consistent fashion. Regular assessment not only helps to guide appropriate care, it helps prevent and/or identify risk factors and symptoms for developing Complex Regional Pain Syndrome (CRPS), which can be particularly difficult to treat. The authors of this guideline recommend using the following validated tools for measuring pain and functional improvement:

The **Foot and Ankle Ability Measure** (FAAM) is a validated tool used to assess functional measure related to musculoskeletal disorders of the lower leg, foot, and ankle (Martin 2005).\(^3\)

The **Short Musculoskeletal Function Assessment** (SMFA) questionnaire can be used with several types of musculoskeletal injuries, is comparable to other assessment scales such as the FAAM, and is freely available (Swiontkowski 1999, Egol 2005, Goldstein 2010).\(^3\)\(^-\)\(^4\)

The **PROMIS scale** (Patient-Reported Outcomes Measurement Information System) measures function in lower extremities using computer-assisted technology. Having been integrated into the Epic electronic medical record software, the PROMIS scale has been validated in multiple settings (Cella 2010, Liu 2010, Rothrock 2010).\(^3\)\(^-\)\(^4\)\(^4\)

VI. Specific Conditions and Surgical Procedures

A. Ankle Arthroscopy and Cheilectomy

Not counting arthroscopic approaches to other surgical procedures, arthroscopy for removing a loose body is a covered procedure when there is evidence of the ankle catching and/or locking and/or effusion (presence of joint fluid and swelling). Arthroscopy, for removing bone spurs (cheilectomy), is also a covered procedure when there is evidence of bony impingement. A 2015 systematic review reported good clinical outcomes in 64-100% of patients undergoing arthroscopic treatment for anterior ankle impingement, with complications seen in only 5% of cases (Zwiers 2015).\(^4\) The same review also found that good to excellent patient satisfaction was seen in 74-100% of cases, and the lowest satisfaction was reported in studies with follow-up >5 years (Zwiers 2015).\(^4\)

B. Ankle Arthrodesis/Fusion or Arthroplasty/Replacement

Work related ankle injuries can be sudden and traumatic. They can result from a crush injury; or start as a soft tissue injury, such as a sprain, and worsen over time if proper treatment is not provided at the start or if significant comorbidities exist. Ankle arthrodesis and ankle arthroplasty are both surgical options when the ankle cartilage is so damaged by arthritis that joint movement and weight bearing activities cause intolerable pain. Fusing the tibia, fibula, and talus (arthrodesis) or replacing the ankle joint (arthroplasty) are major procedures and require inpatient hospitalization and several weeks of protected weight bearing.

\(^4\) http://www.aaos.org/uploadedFiles/PreProduction/Quality/Measures/Foot%20and%20Ankle%20Ability%20Measure.pdf

\(^5\) https://www.ortho.umn.edu/research/mfa-smfa-resources

\(^6\) http://www.healthmeasures.net/explore-measurement-systems/promis
followed by a structured rehabilitation program. Full recovery generally takes several months. These procedures are usually reserved for advanced stages of impairment or disability when:

- Osteoarthritis has resulted in an unacceptable level of impairment in the performance of normal daily activities, or has created a disability that, without treatment, prevents gainful employment
- There are deformities (congenital or developmental) in the joint, and
- Prior conservative and surgical treatments have been unsuccessful in restoring function.

Determining whether arthrodesis or arthroplasty is preferable is a matter of clinical judgment. Generally, ankle arthrodesis can include a broader set of patients (e.g. with comorbidities) than arthroplasty, which requires more careful patient selection to achieve desirable outcomes.

Arthrodesis/Fusion

Arthrodesis is a permanent fusion of the tibia, fibula, and talus. The expected outcome is reduced or absent pain, but because fusion fixes the ankle in one position, it will no longer be able to move. All conservative measures should be exhausted before resorting to an arthrodesis. Risk factors to evaluate before deciding on a fusion include the availability of viable bone to support the fusion, adequate nerve and blood supply to allow healing, and deformities or problems from earlier injuries and treatments that could compromise the effectiveness of the surgery (Frey 1994, Collman 2006, Saragas 2004, DiGiovanni 2016).

In a systematic review, revision rates following ankle arthrodesis was found to be 9% (95% CI, 5.5% to 11.6%), with the primary reason for revision being nonunion (65%) (Haddad 2007). High-risk patients, including those with diabetes and obesity, may be at an even higher risk for nonunion and other complications. One study found that obese arthrodesis patients (BMI ≥30) had significantly increased risks of major and minor complications within 90 days of surgery (Werner 2015). A study of risk factors for nonunion following arthrodesis found that noninsulin dependent diabetic patients were 18.7 times more likely to have a malunion arthrodesis (Chahal 2006).

Arthroplasty/Joint Replacement

Arthroplasty replaces the entire ankle joint with a prosthetic implant. Similar to arthrodesis, all conservative measures should be exhausted before resorting to an ankle arthroplasty. Diabetes and obesity pose significant risks for post-surgical complications and treatment failure. Strong consideration should be given to alternative treatments (i.e. nonsurgical, arthrodesis) or deferring surgery until these risk factors are appropriately treated and optimized. One study found diabetic patients to have greater incidence of poor clinical outcomes, early-onset of osteolysis, and an overall negative impact on short to medium-term results (Choi 2014). Another study found diabetes to be independently associated with an increased risk of perioperative complications, discharge to a facility versus home, and a longer hospital stay (Schipper 2015). Obese patients have been found to have significantly greater odds of implant failure by final follow-up (adjusted OR 2.8, 95% CI 1.04 -7.53), and lower functional outcome scores when compared to non-obese patients (Schipper 2016, Gross 2016). Werner et.al found that obesity was associated with significantly increased rates of all complications, including revision (OR=1.6, 95% CI 1.2 - 2.2) after arthroplasty (Werner 2015).
As with any joint replacement, there is always the possibility of having to revise/replace the prosthesis. Patients <50 years of age are likely to have better clinical results and comparable complication and survivorship rates compared to those >50 years of age (Rodrigues-Pinto 2013). In a study of national revision rates using registry data for different implants, the average revision rate was 21.8% after 5 years, and 43.5% after 10 years (Labek 2011). Another study of registry data found that survival rates for total ankle replacement was 0.87 (95% CI, 0.82–0.91) at 5 years, and 0.81 (95% CI, 0.74–0.88) at 10 years (Bartel 2015).

C. Subtalar Arthrodesis

The subtalar joint in located just below the ankle joint between the talus bone and calcaneus (heel) bone. A subtalar arthrodesis or fusion is performed to relieve pain during movement of the subtalar joint, and is indicated when a work related injury results in post-traumatic arthritis of the hindfoot (Vila-Rico 2015, Munoz 2012).

The hindfoot has several points of articulation with concave and convex curvatures, cavities, chambers, and canals. The ways in which these spaces and surfaces are shaped and positioned are not the same in everyone. The decision to fuse two or more joints depends on how severely a deformity produces instability and pain, and how likely it is that surgery will improve and relieve them. Correction of deformities helps to relieve symptoms and improve surgical prognosis and functionality (Chung, 2014).

The subtalar joint enables the foot to adjust to uneven ground and rotates in multiple directions during walking and standing (Beimers 2012). Arthrodesis of the subtalar joint (fusing the talus and calcaneus) can be done as a single stand-alone procedure, whereas a double (adding the talonavicular joint) and triple (adding the calcaneocuboid joint) arthrodesis are done in addition to the subtalar fusion (Walter 2016).

A double fusion preserves function of the midtarsal joint, is a simpler procedure, and avoids the risk of midtarsal nonunion or malunion (Joveniaux 2010). The triple arthrodesis is usually reserved for correction of painful and deforming conditions e.g. tarsal coalition (abnormal connection of two normally separate bones), planovalgus (rigid flat foot), and cavovarus (high arch and inward turned heel) after conservative care has failed (Walter 2016, Lee/Avila/Han 2016, DeVries and Scharer 2015).

D. Debridement or Stabilization of a Medial or Lateral Talar Lesion

Injuries may cause chondral (cartilage) or osteochondral (bone and cartilage) lesions (OCLs) affecting the tibia, fibula or talus. These defects may cause or aggravate degenerative conditions of the structures that comprise the joints of the ankle. Symptoms can present immediately following injury, or may appear later if a chronic degenerative process is present. Nearly all lateral OCLs have a history of trauma, whereas medial OCLs are less likely to result from a previous trauma (Flick 1985). There are no physical findings indicative of lateral OCLs.

Treatment of medial or lateral talar injuries is directed at stabilizing the ankle or restoring its functional anatomy. Depending upon the nature of the lesion(s), in each individual case, treatment may be non-surgical (e.g. immobilization, restricted weight bearing) or surgical (e.g. debridement, fixation,
microfracture). Specific to the medial lesion, is the need to have a positive diagnostic lidocaine injection before surgery is considered to signify that surgery is likely to relieve pain.

A decision to proceed to surgery treatment should be made only after considering relative contraindications such as age, BMI, the extent of ankle trauma, and the presence of osteophytes. There appears to be a correlation between lesion properties and clinical outcome. A case series found that a lesion diameter of >15mm was correlated with worse clinical outcomes following microfracture, and a cohort study found that risk of clinical failure following marrow stimulation procedures was significantly associated with a defect area >150 mm² (Chuckpaiwong 2008, Choi 2009).69, 70 A separate study found shoulder-type ankle lesions (uncontained lesions with no peripheral cartilage border) experienced worse clinical outcomes regardless of size or location (Choi 2013).71

E. Lateral Ligament Repair or Reconstruction

Lateral ankle ligament injuries are common, with one study finding that among 6 million patients, 3.2% reported lateral ankle ligament injury or instability (Werner 2015).72 Acute injuries from initial inversion and plantarflexion trauma may damage the lateral ligaments (Kerkhoffs 2007).73 Chronic ankle instability can result if the injury is severe, left untreated, or is undertreated (Shakked 2017).74

Non-operative treatment such as rest, ice, compression, and elevation (RICE), functional treatment, or short-term immobilization, is generally the first choice for such injuries (Verhagen 1995, Kerkhoffs 2002 a; Kerkhoffs 2002 b, Petersen 2013).75-78 In most cases, non-operative care can lead to a fully functional recovery (Kerkhoffs 2007).73

When surgery is indicated, repair of the ligament using the patient’s own tissue is generally considered the first line of treatment (e.g. Brøstrom procedure) (Brøstrom 1966, Gould 1980, Baumhauer 2002).79-81 When there is insufficient tissue or if persistent laxity is present, reconstruction using an auto- or allograft (e.g. Watson-Jones or Evans technique) should be considered (Baumhauer 2002, Younes 1988, Ventura 2014, Shakked 2017).74, 81-83 Studies have shown that lateral ankle instability treated by reconstruction, shows no significant difference in ankle plantarflexion or dorsiflexion ROM when compared with the contralateral extremity (Hsu 2016).84 While there is concern over excessive stiffness and decreased ankle inversion after reconstruction, the preservation of muscle strength allows for preservation of ankle eversion (Ventura 2014, Hsu 2016).83, 84

F. Peroneal Tendon Repair

The peroneal tendons, including the peroneus brevis and peroneus longus tendons are common sources of tendon pathology in the ankle (Cerrato 2009).85, 86 The peroneal tendons can be traumatized with a single injury, or repeatedly over time by mechanisms such as acute inversion ankle sprains or peroneal subluxation (Dombek 2003, Cerrato 2009).85-87 Peroneal tendon disorders can present as posterolateral ankle pain, and may include tenosynovitis, tendon dislocation, subluxation, or rupture (Lee 2013, Bojanić 2015).88, 89
Anatomic features, such as a low-lying brevis muscle belly or a peroneus quartus may be contributing factors to peroneal tendon injury (Rosenberg 1997, Khoury 1996, Zammit 2003, Freccero 2006). When considering repair for a work-related peroneal tendon injury and underlying deformities (e.g. pes cavus) are present, correction of the deformity at the time of surgery may be done if required for a successful surgical outcome (Cerrato 2009, Vega 2013, Bojanić 2015).

G. Achilles Tendon Repair or Reconstruction

The Achilles tendon is the largest tendon in the body. Made up of fibrous connective tissue, it may become susceptible to injury over time due to routine body stressors, activity changes, and lack of blood flow to the area. In a study of 697 patients presenting to a clinic with a foot or ankle complaint, 5.6% of patients were found to have an Achilles tendinopathy (Waldecker 2012).

An Achilles tendon repair or reconstruction procedure is performed when injury causes a partial tear or acute rupture of the tendon attaching the calf muscles (soleus and gastrocnemius) to the heel bone (calcaneus). The ultimate goal of any Achilles tendon treatment is to have the ruptured ends of the tendon rejoined, and the tendon restored to its full length and function.

Repair at Insertion

The clinical presentation of insertional Achilles tendinopathy includes pain in the back of the leg near the heel (Wiegerinck 2013). Some patients may present with a small lump right above the heel (Haglund’s deformity) (Schepsis 2002). Evidence suggests that both surgical and conservative treatments for insertional Achilles tendinopathy are effective (Kearney 2010, Wiegerinck 2013). At least 12 weeks of conservative care, including activity modification, non-opioid analgesics, and/or immobilization with braces should be tried prior to any surgical intervention for insertional Achilles tendinopathy (Kearney 2010). Corticosteroid injections are generally discouraged in treatment of Achilles tendinopathy. While some studies have shown short-term benefits, the adverse effects of corticosteroid injections such as atrophy, rupture, and decreased strength of the tendon, suppress any potential value (Li 2016).

Surgical repair of the Achilles tendon at the calcaneal insertion point is done for inflammation of the sheath surrounding the tendon and the deterioration of the associated connective tissue (van Dijk 2011, Wiegerinck 2013). The damaged portion of the tendon is removed and, after preparing the heel bone surface, the healthy portion is reattached.

Repair

The primary surgical procedure performed for acute ruptures of the Achilles tendon, an Achilles tendon repair, can be performed with the first instance of a combination of clinical findings. Clinical findings indicative of an Achilles repair include: acute rupture of the tendon, pain, swelling, positive Thompson’s sign, plantarflexion weakness, and a palpable defect. Acute tears may be treated surgically or conservatively with functional rehabilitation. Conservative treatment appears to have a higher incidence of re-ruptures but avoids potential complications of surgery such as infections and wound healing complications (Wu 2016, Erickson 2015).
Reconstruction

Chronic Achilles tendon tears are more difficult to diagnosis as scarring may replace the palpable defect seen in acute tears. Due to retraction of the tendon, primary repair is not always feasible for chronic tears. A preoperative MRI is required to better define the anatomy of a chronic tear. Currently there is no gold standard for repairing chronic tears; but multiple options exist, such as: flap tissue turn down, local tendon transfer, autologous free tendon grafts, and allografts (Maffulli 2015).^{105}

H. Posterior Tibialis Tendon Reconstruction

Posterior tibialis tendon insufficiency/dysfunction (PTTD) occurs when the posterior tibial tendon becomes inflamed or torn. The posterior tibialis attaches to the navicular on the medial aspect of the foot helping to support the arch. Diagnosis of PTTD is supported by the clinical findings of:

1. Swelling along the medial aspect of the foot and ankle (Churchill 1998),^{106}
2. Changes in the shape of foot with gradual collapse of the medial arch and increasing hindfoot valgus (Yao 2015),^{107} and
3. Inability to do a single foot heel rise (stand of toes) due to pain and weakness (Laughlin 2000).^{108}

Conservative treatment prior to surgical intervention is highly effective, with a recent study showing 87.5% of patients achieving success with non-operative treatment (Nielsen 2011).^{109} If conservative treatment is not successful, posterior tibialis tendon reconstruction may be accomplished through a variety of surgical procedures such as (Hentges 2014, Marks 2009, Coetzee 2003):^{110-112} gastrocnemius recession (Coetzee 2003),^{112} tenosynovectomy (Teasdall 1994),^{113} tendon transfer (Van Gestel 2015),^{114} osteotomy (Coetzee 2003, Myerson 2004),^{112, 115} and arthrodesis/fusion (Van Gestel 2015).^{114} The procedure of choice is determined by the severity and degree of tendon disease (Coetzee 2003, Johnson 1989).^{112, 116} Recovery after one of these procedures is likely to require 12 weeks of non-weight bearing.

PTTD and Work-relatedness

As previously discussed in the Pre-existing Non-work related Conditions section, PTTD, or pes planus in adults, is unlikely that cumulative weight bearing in the workplace would arise or worsen such a condition. The consensus of the guideline authors is that PTTD is closely correlated with genetic and congenital predisposition, and does not normally result from cumulative workplace exposure. In the patient with congenital hindfoot valgus and pes planus posture of the foot, PTTD is unlikely to arise from, or be worsened by cumulative weight bearing in the workplace. As such, PTTD is generally not considered an occupational disease.

I. Tarsal Tunnel Release

Tarsal Tunnel Syndrome (TTS) occurs when systemic disease, injury, or body structure entraps or compresses the posterior tibial nerve or one of its branches (e.g. the lateral and medial plantar nerves). Examples include space-occupying lesions, fractures of the medial calcaneal wall, direct trauma to the heel, and traction neuritis (Gould 2011).^{117} TTS is a relatively rare condition, and other causes of medial ankle and plantar foot pain include but are not limited to plantar fasciitis, intervertebral disk lesion,
interdigital neuroma, plantar fibromatosis, peripheral vascular disease, valgus hindfoot, rheumatoid arthritis, tenosynovitis, and diabetic neuropathy (McSweeney 2015).118 It is important to rule out etiologies that are more common prior to arriving upon the diagnosis of TTS. Care should be taken in patients with idiopathic or traumatic etiologies, as they have been shown to be associated with worse clinical outcomes following surgery (Takakura 1991).119 Systemic comorbidities such as back pain, depression, COPD, or total previous systemic surgeries have also been shown to be associated with worse clinical outcomes (Gondring 2003).120

Tarsal tunnel release exposes the tibial nerve and removes anatomical structures causing the entrapment or compression. It is a covered procedure when all the following criteria are met:

1. A documented discrete work-related foot/ankle trauma has occurred.
2. Presence of pain and/or paresthesias in the distribution of the medial and/or lateral plantar nerves (Takakura 1991).119
3. An MRI demonstrates a compressive lesion (e.g. a cyst) affecting the tibial nerve OR if there is no evidence of a compressive lesion, an EMG or nerve conduction study (NCS) that is positive for tarsal tunnel syndrome.

A positive NCS consistent with tarsal tunnel syndrome is an acceptable diagnostic tool, as it has been found that NCS may be abnormal in some patients with suspected TTS (Patel 2005).121 A positive NCS will generally show a > 1msec difference between the terminal latency of the medial plantar nerve (MPN) to the abductor hallucis muscle and terminal latency of the lateral plantar nerve (LPN) to the abductor digiti quinti muscle. Normal findings of these terminal latencies are MPN of < 6.2msec and LPN of < 7 msec. Increases in these latencies and those of sensory nerve conduction velocities are also indicative of TTS (Coughlin).122

J. Amputations

Amputation is a significant life-altering event. It should only be considered if the limb cannot be reconstructed and/or removal will help achieve the best possible outcome. An amputation may be necessary for preventing the spread of recalcitrant infections, severe peripheral vascular disease, persistent nonunion of bone, and when there is insufficient bone, muscle, or nerve for reconstruction. Amputation when pain is the primary indication is generally discouraged; see Amputations Contemplated in the Setting of Chronic Pain.

Throughout treatment for lower limb injuries, patients should be monitored for risk factors that could lead to amputation. If all conservative care options have been exhausted and amputation is the only choice, the level of the planned amputation should be thoroughly evaluated for the limb’s ability to heal and achieve maximum function. If the severity of risk factors and the potential for major complications such as deep wound infection and supplementary limb amputation outweigh the benefit of the planned procedure, delaying amputation until the risk factors have improved or proceeding with an alternative non-surgical treatment plan may be necessary. For example, consider consulting with an Orthotist and/or
Prosthetist to evaluate the need for specialized ankle foot orthoses. One such device is the Dynamic Offloading Brace, which has the potential to prevent amputations.

Amputations Contemplated in the Setting of Chronic Pain

The decision algorithm to proceed with a partial foot or lower limb amputation is complex and not within the scope of this guideline. Amputation for the purpose of intractable pain, however, is controversial and merits discussion. While cases are relatively infrequent, such amputations can result in significant morbidity, including continued pain. A recent study of patients with a diagnosis of Complex Regional Pain Syndrome (CRPS) found that 22% of patients undergoing amputations experienced postoperative complications, and 72% of patients experienced phantom limb pain within 3 months, increasing to 77% of patients at ≥1 year post amputation (Bodde 2014). While there is no absolute marker for the source of pain, every effort should be taken to ensure that a patient’s pain correlates with the diagnosis, and that any proposed procedure is likely to effectively address the source of pain and increase the chance of improved functional outcomes. The provider should watch for the development of unresolved chronic pain or sudden changes in the type and level of pain, and consult with any specialists needed to establish an effective pain management plan. If prescribing opioids are part of that plan, the prescriber should follow L&I’s evidence based Guideline for Prescribing Opioids to Treat Pain in Injured Workers. When, as a last resort, amputation is being considered primarily for the purpose of reducing pain, the worker must be evaluated at Labor & Industries designated Amputation Center of Excellence.

VII. Return to Work

Return to work (RTW) is expected after most occupational foot and ankle injuries. Duration of disability or time off work depend on many factors such as the severity of the injury, type of treatment, comorbid conditions, and job class type. Multiple resources are available through L&I’s RTW program to help providers in their interactions with workers, employers, and claim managers to discuss and coordinate the best ways to help with return to work. There is a particularly useful “Return to Work Desk Reference” for attending providers with guidance on how to talk with workers and their employers (and get paid for it), online publications to inform the patient how returning to work can reduce disability, descriptions of best practices, checklists, algorithms, vignettes, and a list of ways L&I staff can assist.

L&I has also published a Functional Recovery Interventions Tracking Sheet that is designed as a checklist for engaging the patient in discussions of recovery and returning to work.

b http://www.lni.wa.gov/ClaimsIns/Files/OMD/MEDTreat/FINALOpioidGuideline010713.pdf

p http://www.uwmedicine.org/harborview/services/burn-center

q http://www.lni.wa.gov/ClaimsIns/Providers/TreatingPatients/RTW/default.asp

r http://www.lni.wa.gov/IPUB/200-002-000.pdf

s http://www.lni.wa.gov/forms/pdf/F245-420-000.pdf
VIII. Acknowledgements

Acknowledgement and gratitude go to all subcommittee members, clinical experts, consultants, and L&I staff who contributed to this important guideline:

IIMAC Committee Members
- Chris Howe, MD – Chair, Valley Medical Center
- Andrew Friedman, MD – Virginia Mason Medical Center
- Kirk Harmon, MD – MultiCare

Subcommittee Clinical Experts
- Janna Friedly, MD – Harborview Medical Center
- Jonathan Hall, MD – ProOrtho, Proliance Surgeons
- Byron Hutchinson, DPM – Franciscan Foot and Ankle Associates
- Anne McCormack, MD – Providence Everett Healthcare
- Erik Novak, MD, PhD – Proliance Orthopedic Associates, Valley MC
- Bruce Sangeorzan, MD – UW and Director VA Center for Limb Loss Prevention and Prosthetic Engineering
- Eugene Pepper Toomey, MD – Swedish Hospital

Qualis Health Consultants
- Shari Fowler-Koorn, RN
- Ken O’Bara, MD
- John Sparks, MD
- Margaret Baker, MD

Labor and Industries Staff
- Gary M. Franklin, MD, MPH, Medical Director
- Lee Glass, MD, JD, Associate Medical Director
- Nicholas Reul, MD, MPH, Associate Medical Director
- Zachary Gray, MPH, Epidemiologist
- Simone P. Javaheer, RN, BSN MPA, Clinical Manager of Health Policy
- Angela Jones, BSN, RN
- Aquila Doore, RN, BSN, MBA, JD, Occupational Nurse Consultant
IX. References

